PPGED - Mestrado Profissional em Educação (Dissertações)
Permanent URI for this collectionhttps://repositorio.ufvjm.edu.br/collections/7dace26e-c209-4368-bebd-d4b441715786
Browse
2 results
Search Results
Item Mineração de Texto: a clusterização aplicada em artigos científicos de Química, por meio do modelo Cassiopeia(UFVJM, 2023) Amariz, Diego Sampaio; Guelpeli, Marcus Vinicius Carvalho; Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM); Guelpeli, Marcus Vinicius Carvalho; Assis, Weslley Luiz da Silva; Mesquita, João Paulo deA Química é uma ciência básica da natureza. Ao se dedicar à compreensão da natureza submicroscópica da matéria e suas transformações, desenvolve uma linguagem própria e produz um conhecimento fundamental sobre a natureza. Sua natureza como conhecimento básico a levou, junto com outras ciências da natureza, a compor o conhecimento de qualquer cidadão, quer seja para ler e compreender o mundo natural ou transformado pela mão do homem, quer seja para se continuar os estudos em nível superior ou técnico em outras áreas ou profissões. No entanto, assimilar e lidar com o grande volume de informação disponível, localizando-as de forma rápida e precisa, tornou-se um grande desafio, dentro da diversa gama documental existente. Com isso, Técnicas de Mineração de Texto podem auxiliar nesse processo, por meio da extração de dados textuais. Dessa forma, o objetivo dessa pesquisa é relacionar conceitos de Química encontrando palavras similares em artigos científicos de área, que possam demonstrar uma ligação entre alguns conceitos abordados no Ensino Médio. Por meio da técnica de clusterização com a utilização do modelo Cassiopeia, em um corpus de textos acadêmicos relacionados a Química. A pesquisa foi desenvolvida segundo as seguintes ações: levantamento bibliográfico; construção do corpus; coleta do corpus; análise estatística do corpus; mineração de texto; a clusterização; e, por fim, a análise dos dados a partir dos clusters gerados. Os resultados obtidos mostraram que a clusterização, efetuada no corpus, por meio do modelo Cassiopeia proporcionou a relação entre conceitos químicos, encontrando palavras similares nos artigos científicos que compõem o corpus desenvolvido nessa pesquisa. Destaca-se como contribuição desta pesquisa a criação de um corpus relacionado ao conteúdo de Química, que pode ser utilizado por pesquisadores em trabalhos futuros. Além disso, destaca-se a relação existente entre palavras em diversos artigos do corpus, que demonstram a ligação de conteúdos de Química abordados no EM.Item ENEM nas redes sociais: mineração de textos e clusterização(UFVJM, 2017) Silva, Leila Maria; Guelpeli, Marcus Vinícius Carvalho; Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM); Guelpeli, Marcus Vinícius Carvalho; Fonseca, Alexandre Ramos; Sabino, Geruza de Fátima Tomé; Villela, Maria Lucia BentoA internet é hoje a maior fonte de informação eletrônica existente. Cresce a cada dia o número de usuários da internet, e consequentemente o uso das redes sociais online. São muitas as informações novas que ficam embutidas nas bases de dados textuais. Por causa da sua natureza dinâmica, ou seja, milhões de páginas surgem e desaparecem todos os dias, a tarefa de encontrar informações relevantes nessas bases de dados se torna muito difícil. As técnicas de mineração de textos para a descoberta de informações na web surgiram da necessidade de sanar este problema. O presente trabalho versa sobre a aplicação de métodos de mineração de textos com clusterização na grande quantidade de mensagens sobre o Exame Nacional do Ensino Médio no ano de 2016 provenientes da rede social Twitter. O foco deste estudo está na obtenção de grupos de textos, a fim de possibilitar uma visualização resumida e sintetizada dos assuntos mais comentados pelos usuários. Para manipulação dessas bases textuais, o Modelo Cassiopeia foi utilizado empregando seu algoritmo de agrupamento textual que tem como principal finalidade gerar agrupamentos, ou seja, clusters (grupos) de documentos textuais que apresentam algum tipo de similaridade. O Modelo Cassiopeia apresenta um limite de processamento com a quantidade máxima de 700 tweets. Os tweets passam primeiramente pela fase de limpeza dos textos no pré-processamento, logo após, a utilização do algoritmo no processamento e por fim, as análises dos resultados no pós-processamento. Os resultados obtidos neste trabalho mostram valores coesos quanto à similaridade dos documentos dentro de um cluster e entre os clusters, avaliados por medidas de agrupamento textual, proposto pelo Modelo Cassiopeia. Isso demonstra a aplicabilidade dessa proposta para a visualização sintetizada das informações mais significativas de um determinado tema, muitas vezes permitindo que ações sejam antecipadas e impactos sobre a população afetada sejam reduzidos.