Redução do número de parcelas para modelagem da prognose do volume de floresta

Thumbnail Image

Date

2016

Journal Title

Journal ISSN

Volume Title

Publisher

UFVJM

Abstract

O objetivo deste estudo foi avaliar o efeito da redução de parcelas permanentes no custo da realização do inventário florestal contínuo e realizar a prognose do volume de floresta comparando o emprego das Redes Neurais Artificiais ao modelo tradicionalmente utilizado proposto por Clutter (1963). Os dados utilizados foram provenientes de povoamentos localizados no litoral norte da Bahia, totalizando cerca de 3.000 hectares de floresta. Foram propostas duas metodologias para auxiliar na redução das parcelas. Para a metodologia proposta no estudo 1, os dados foram divididos aleatoriamente em dois grupos: treinamento (10, 20, 30, 40, 50, 60, 70, 80, e 90%) e generalização (90, 80, 70, 60, 50, 40, 30, 20, 10%). Os dados do treinamento foram utilizados para gerar as redes neurais artificias enquanto que os dados da generalização serviram para validar a capacidade das redes em gerar resultados precisos para dados desconhecidos. A metodologia proposta no estudo 2 dividiu aleatoriamente os dados em dois grupos: treinamento a escolha fixa de quantidades de parcelas pré-estabelecidas nas três classes de sítio (10, 20, 30, 40, 50 e 60) totalizando 30, 60, 90, 120, 150 e 180 parcelas utilizadas para o treino das redes neurais e os demais dados foram utilizados para validar a capacidade das redes. A estimativa da variável de estudo foi gerada no sistema computacional Neuroforest 3.3. A aplicação das Redes Neurais Artificiais apresentaram resultados satisfatórios bem como a aplicação de ambas metodologias permitiram reduzir consideravelmente o custo para a realização do inventário florestal.

Description

Área de concentração: Silvicultura e Manejo Florestal.

Keywords

Citation

NERY, Kaio Cesar Mendes da Silva. Redução do número de parcelas para modelagem da prognose do volume de florestas. 2016. 41 p. Dissertação (Mestrado) – Programa de Pós-Graduação em Ciência Florestal, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, 2016.

Endorsement

Review

Supplemented By

Referenced By