Proposta de uma abordagem computacional para detecção automática de estilos de aprendizagem utilizando modelos ocultos de Markov e FSLSM
Date
2016
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
UFVJM
Abstract
Um dos grandes desafios dos dias atuais no desenvolvimento de tecnologias computacionais
aplicadas ao processo educacional é produzir soluções que sejam capazes de atender corretamente ao processo de ensino e aprendizagem, além de definir a forma mais adequada de incorporar esses mecanismos no ambiente escolar. Esta inserção deve ocorrer de forma que alunos e professores aproveitem ao máximo esses instrumentos, e passem a utilizá-los com o intuito de agregar mais valor aos processos de ensino e aprendizagem. Para que isso ocorra, é fundamental que os ambientes virtuais forneçam conteúdo adequado, objetos de aprendizagem atraentes, além de serem dinâmicos e altamente adaptáveis às necessidades e interesses dos estudantes durante as sessões de aprendizagem, visando a melhoria contínua do processo educacional para professores, tutores e estudantes. O presente trabalho tem como objetivo principal apresentar um modelo computacional probabilístico, que pode ser incorporado às estruturas dos ambientes virtuais de aprendizagem, a fim de auxiliar no processo de detecção automática das tendências e preferências dos estilos de aprendizagem do estudante, utilizando uma combinação do modelo proposto por Felder e Silverman para estilos de aprendizagem, o FSLSM, com as técnicas de inferência probabilística dos modelos ocultos de Markov (HMM). Para a validação do modelo, foram realizados experimentos em um simulador computacional capaz de reproduzir parcialmente o processo de interação do estudante com o ambiente virtual de aprendizagem, realizando um processo de inferência com base no comportamento do estudante, ao qual foi utilizado o algoritmo de Viterbi para este propósito. Ao final, os resultados dos experimentos são apresentados e demonstraram um elevado grau de precisão no processo de inferência do estilo de aprendizagem probabilístico.
Description
Keywords
Citation
SENA, Edson Batista de. Proposta de uma abordagem computacional para detecção automática de estilos de aprendizagem utilizando modelos ocultos de Markov e FSLSM. 2016. 115 p. Dissertação (Mestrado Profissional) – Programa de Pós-Graduação em Educação, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, 2016.