Pró-Reitoria de Pesquisa e Pós-Graduação
Permanent URI for this communityhttps://repositorio.ufvjm.edu.br/communities/1efbe8c9-f03c-44d3-8028-d62de805b8fa
A Pró-Reitoria de Pesquisa e Pós-Graduação da Universidade Federal dos Vales do Jequitinhonha e Mucuri - PRPPG/UFVJM - tem a finalidade de apreciar, coordenar, auxiliar, deliberar e homologar as atividades de Pesquisa, Pós-Graduação e inovação da Instituição. A PRPPG possui um orgão de deliberação denominado Conselho de Pesquisa e Pós-Graduação - CPPG. A "Pró-Reitoria de Pesquisa e Pós-Graduação" é constituída pela Diretoria de Pesquisa e pela Diretoria de Pós-Graduação no campus sede da UFVJM e pelas diretorias de Pesquisa e de Pós-Graduação dos campi fora de sede.
Browse
3 results
Search Results
Item Taxonomia de traços de personalidade de usuários das redes sociais(UFVJM, 2021) Brito, Cecy Maria Martins; Guelpeli, Marcus Vinicius Carvalho; Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM)O presente trabalho de pesquisa foi desenvolvido no Programa de Pós-Graduação em Educação, da Universidade Federal dos Vales do Jequitinhonha e Mucuri, no âmbito da linha de pesquisa Educação e Tecnologias Aplicadas às Instituições Educacionais. Trata-se de uma pesquisa de cunho bibliográfico e quantitativo, cujo corpus foi composto por textos escritos por usuários da rede social Facebook e que teve como objetivo geral avaliar a hipótese de a taxonomia de textos ser capaz de contribuir para a identificação de traços de personalidade em textos de usuários dessa rede social, por meio do modelo computacional Cassiopeia. Para isso, foram analisados textos publicados pelos usuários, por meio da seleção de grupos, fechados e secretos, de pessoas que se dizem usuárias do Facebook. Utilizando o Cassiopeia, tais textos foram classificados em um determinado traço de personalidade, de acordo com o Big Five – ou os cinco fatores da personalidade (extroversão / introversão; neuroticismo / estabilidade emocional; socialização / agradabilidade; escrupulosidade / conscienciosidade ou realização; e abertura para experiência). A partir dessa classificação, pôde-se identificar esses traços e, por meio deles, agrupar, de maneira automática, inúmeros textos de usuários, além de descobrir conhecimentos implícitos, criar um conjunto de palavras que classificam os grupos de usuários e identificar o traço de personalidade característico destes. Os textos foram selecionados utilizando-se a mineração de textos para criar uma taxonomia de traços de personalidade. Os resultados da pesquisa foram considerados positivos, porque o procedimento computacional acima descrito agrupou os 100 textos selecionados em 26 clusters (pastas) a partir da taxonomia de traços de personalidade criada.Item Um modelo baseado em regras para a detecção de bots no Twitter(UFVJM, 2019) Leite, Maria Alice Gomes Lopes; Guelpeli, Marcus Vinícius Carvalho; Santos, Caroline Queiroz; Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM); Santos, Caroline Queiroz; Villela, Maria Lúcia Bento; Maia, Renato DouradoO grande crescimento do uso cotidiano das redes sociais on-line pela sociedade transformou-as em importantes fontes de estudos em diversas áreas. Os dados gerados por essas redes passaram a ser utilizados em pesquisas de diferentes fins, que vão desde a previsão do mercado de ações e resultados de eleições, até o comportamento humano. Porém, as amostras de dados extraídas dessas redes tornaram-se vulneráveis às atividades dos bots, contas automatizadas utilizadas com o objetivo de enganar e influenciar outros usuários. Diante disso, este trabalho propôs uma abordagem supervisionada de extração de conhecimento de uma base de dados da literatura, por meio de técnicas que visam não somente classificar, mas descrever as principais características dos bots no Twitter, gerando assim um modelo de classificação baseado em regras. Após a interpretação e modelagem do problema, os dados foram preparados, inserindo, modificando, preenchendo e excluindo atributos por meio de informações de contexto para as diferentes técnicas de Inteligência Artificial aplicadas. A Árvore de Decisão construiu condições sequenciais em linguagem natural, demonstrando um poder de classificação de 0,97 para a AUC-ROC. Novas regras foram geradas,por meio de indução, baseada em escores, a fim de encontrar condicões que foram negligenciadas pela árvore. Essas regras foram avaliadas pela métricas de Cobertura, Confiança e Lift, e demonstraram um alto poder discriminante. Este trabalho visa contribuir com a camada de filtro de bots no Framework Oráculo, que, por meio de uma interface amigável, visa coletar dados do Twitter com pouca interferência de contas maliciosas. Esse framework está sendo construído pelo Grupo de Pesquisa MTPLNAM e será disponibilizado para toda a comunidade sob licença de software livre.Item ENEM nas redes sociais: mineração de textos e clusterização(UFVJM, 2017) Silva, Leila Maria; Guelpeli, Marcus Vinícius Carvalho; Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM); Guelpeli, Marcus Vinícius Carvalho; Fonseca, Alexandre Ramos; Sabino, Geruza de Fátima Tomé; Villela, Maria Lucia BentoA internet é hoje a maior fonte de informação eletrônica existente. Cresce a cada dia o número de usuários da internet, e consequentemente o uso das redes sociais online. São muitas as informações novas que ficam embutidas nas bases de dados textuais. Por causa da sua natureza dinâmica, ou seja, milhões de páginas surgem e desaparecem todos os dias, a tarefa de encontrar informações relevantes nessas bases de dados se torna muito difícil. As técnicas de mineração de textos para a descoberta de informações na web surgiram da necessidade de sanar este problema. O presente trabalho versa sobre a aplicação de métodos de mineração de textos com clusterização na grande quantidade de mensagens sobre o Exame Nacional do Ensino Médio no ano de 2016 provenientes da rede social Twitter. O foco deste estudo está na obtenção de grupos de textos, a fim de possibilitar uma visualização resumida e sintetizada dos assuntos mais comentados pelos usuários. Para manipulação dessas bases textuais, o Modelo Cassiopeia foi utilizado empregando seu algoritmo de agrupamento textual que tem como principal finalidade gerar agrupamentos, ou seja, clusters (grupos) de documentos textuais que apresentam algum tipo de similaridade. O Modelo Cassiopeia apresenta um limite de processamento com a quantidade máxima de 700 tweets. Os tweets passam primeiramente pela fase de limpeza dos textos no pré-processamento, logo após, a utilização do algoritmo no processamento e por fim, as análises dos resultados no pós-processamento. Os resultados obtidos neste trabalho mostram valores coesos quanto à similaridade dos documentos dentro de um cluster e entre os clusters, avaliados por medidas de agrupamento textual, proposto pelo Modelo Cassiopeia. Isso demonstra a aplicabilidade dessa proposta para a visualização sintetizada das informações mais significativas de um determinado tema, muitas vezes permitindo que ações sejam antecipadas e impactos sobre a população afetada sejam reduzidos.