Pró-Reitoria de Pesquisa e Pós-Graduação

Permanent URI for this communityhttps://repositorio.ufvjm.edu.br/communities/1efbe8c9-f03c-44d3-8028-d62de805b8fa

A Pró-Reitoria de Pesquisa e Pós-Graduação da Universidade Federal dos Vales do Jequitinhonha e Mucuri - PRPPG/UFVJM - tem a finalidade de apreciar, coordenar, auxiliar, deliberar e homologar as atividades de Pesquisa, Pós-Graduação e inovação da Instituição. A PRPPG possui um orgão de deliberação denominado Conselho de Pesquisa e Pós-Graduação - CPPG. A "Pró-Reitoria de Pesquisa e Pós-Graduação" é constituída pela Diretoria de Pesquisa e pela Diretoria de Pós-Graduação no campus sede da UFVJM e pelas diretorias de Pesquisa e de Pós-Graduação dos campi fora de sede.

Browse

Search Results

Now showing 1 - 1 of 1
  • Thumbnail Image
    Item
    Utilização de Modelos Ocultos de Markov e Aprendizagem por Reforço para detecção de estilos de aprendizagem de estudantes em Sistemas de Gestão de Aprendizagem
    (UFVJM, 2018) Almeida, Arthur Machado França de; Assis, Luciana Pereira de; Andrade, Alessandro Vivas; Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM); Assis, Luciana Pereira de; Andrade, Alessandro Vivas; Pitangui, Cristiano Grijó; Berti, Cláudia Beatriz
    Um dos maiores desafios na área da Educação à Distância é fornecer soluções tecnológicas que atendam aos estudantes de forma diferenciada. Os Ambientes Virtuais de Aprendizagem, embora auxiliem os professores e estudantes na realização dos cursos, não consideram as diferenças individuais de cada discente. Pesquisas apontam que considerar as diferenças dos estudantes, por intermédio dos Estilos de Aprendizagem, impacta positivamente no rendimento dos alunos ao longo do curso. Diante desse cenário, a identificação automática de Estilos de Aprendizagem dos estudantes nos Sistemas de Gestão de Aprendizagem é um importante tópico nas pesquisas da área de Tecnologia aplicada à Educação. O presente trabalho apresenta uma abordagem para identificação automática dos Estilos de Aprendizagem dos estudantes em Sistemas de Gestão de Aprendizagem. A abordagem proposta utiliza Modelos Ocultos de Markov para modelar os Estilos de Aprendizagem, o Algoritmo de Viterbi para inferi-los, e uma abordagem de Aprendizagem por Reforço para correção da detecção automática dos Estilos de Aprendizagem. Os resultados apontam uma taxa média de 91% de inferências corretas, demonstrando ser uma abordagem eficaz e promissora para a utilização em Sistemas de Gestão de Aprendizagem.