Browsing by Author "Silva, Júlio César da Costa"
Now showing 1 - 1 of 1
- Results Per Page
- Sort Options
Item Detecção Automática e Dinâmica de Estilos de Aprendizagem em Sistemas Adaptativos e Inteligentes utilizando Dynamic Scripting(UFVJM, 2017) Silva, Júlio César da Costa; Pitangui, Cristiano Grijó; Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM); Pitangui, Cristiano Grijó; Teixeira, Josiane Magalhães; Assis, Luciana Pereira deUma das formas de se gerar conteúdo adaptado ao estudante passa, primeiro, pela detecção dos Estilos de Aprendizagem (EA). A teoria dos EA presume que cada aluno tem características próprias que o distingue dos demais. A partir dos EA, o Sistema Adaptativo e Inteligente para Educação (SAIE) de Dorça foi idealizado. Seu trabalho objetiva apresentar uma solução estocástica para provimento de adaptatividade e customização de Sistemas Educacionais por meio da modelagem probabilística dos EA. Em síntese, seu SAIE visa modelar o estudante, coletando e atualizando seus dados, de forma a descobrir seu EA. Com este fim, o sistema, durante suas iterações, submete o aluno a avaliações e, caso as notas sejam insatisfatórias, o sistema realiza a atualização do modelo do estudante (ME) por meio do Aprendizado por Reforço (AR). Contudo, AR é considerada uma técnica lenta de aprendizado que demanda muito tempo para ajustar o elemento a ser otimizado. Por sua vez, a técnica Dynamic Scripting (DS), uma variação da técnica de AR, apresenta alta velocidade de convergência, mesmo em ambientes dinâmicos. DS é popularmente utilizada na IA de Jogos e consiste em um conjunto de Regras sobre um domínio, estruturadas por uma condição e uma ação. Sua forma de aprendizagem atrela um peso a cada regra, o qual determina a qualidade da regra, frente à sua condição, e uma probabilidade da mesma ser aplicada. A condição de uma regra é a representação de uma situação possível no sistema, e sua ação é a intervenção gerada no sistema durante a sua aplicação. Este trabalho propõe o aperfeiçoamento do SAIE citado, utilizando uma adaptação do DS, com os objetivos de acelerar a convergência do sistema, reduzir os Problemas de Aprendizagem (PA) e aumentar a nota do estudante. Adicionalmente, devido a característica dinâmica do DS, este trabalho realiza experimentos em situações em que o EA Real (EAr) dos alunos variam ao longo do processo de ensino/aprendizagem. A pesquisa parte da elaboração das regras e implementação da estrutura do DS, avançando para a substituição do módulo de AR pelo DS no SAIE de Dorça. Realizaram-se 30 testes para cada uma das 16 Combinações de EA (CEA), 16*30 testes para cada uma das 4 abordagens: Dorça-Estático, Dorça-Dinâmico, DS-Estático e DS-Dinâmico. Nos testes dinâmicos, modificou-se o EAr a cada 150 interações, de forma que após 300 interações, o sistema deve convergir para uma CEA oposta à inicial. Resultados preliminares, em comparação à abordagem da literatura, apresentaram uma redução média nos PA de 35.8% para os testes dinâmicos e de 54.1% para os testes estáticos. Quando o EA Probabilístico (EAp) inicial é exatamente igual ao EAr, verificou-se que a abordagem proposta apresentou em média 6 erros na atualização do ME, enquanto a abordagem da literatura apresentou, em média, 23 erros. Verificou-se, portanto, que, preliminarmente, a proposta obteve resultados promissores.